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Spin-dependent transport through two coupled single-level quantum dots weakly connected to ferromagnetic
leads with collinear magnetizations is considered theoretically. Transport characteristics, including the current,
linear and nonlinear conductances, and tunnel magnetoresistance are calculated using the real-time diagram-
matic technique in the parallel, serial, and intermediate geometries. The effects due to virtual tunneling pro-
cesses between the two dots via the leads, associated with off-diagonal coupling matrix elements, are also
considered. Negative differential conductance and negative tunnel magnetoresistance have been found in the
case of serial and intermediate geometries, while no such behavior has been observed for double quantum dots
coupled in parallel. It is also shown that transport characteristics strongly depend on the magnitude of the

off-diagonal coupling matrix elements.
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I. INTRODUCTION

Transport properties of double quantum dots (DQDs)
have recently attracted considerable attention from both ex-
perimental and theoretical sides.'!! This is mainly due to the
fact that DQDs are one of the simplest model systems that
mimic behavior of real molecules, and are thus frequently
referred to as artificial molecules. Moreover, double quantum
dots are considered to play an important role in quantum
computation>* and spintronics.'?>"'* They exhibit a variety of
different phenomena, including the Pauli-spin blockade,* for-
mation of molecular states,’ spin filtering effects,’ or various
interference effects, such as Fano or Dicke resonances.'> 16 In
addition, very recently it was shown theoretically that, when
coupled to ferromagnetic leads, double quantum dots display
a considerable tunnel magnetoresistance (TMR) and spin ac-
cumulation effects.!>!”-1° Spin-dependent transport proper-
ties of quantum dots have been so far mainly addressed in
the case of single quantum dots.?>>> This field is already
rather well established and transport through single quantum
dots coupled to ferromagnetic leads has been extensively
studied experimentally.?®=3 On the other hand, theoretical
investigations of spin effects in multidot structures are in
relatively initial stage, and so is experimental implementa-
tion of DQDs coupled to ferromagnetic leads, which still
remains a challenge.

In this paper we consider the spin-dependent transport
properties of double quantum dots focusing on the weak-
coupling regime. Conductance of the system is then deter-
mined mainly by discreteness of the dots’ energy levels and
Coulomb correlations, which may lead to the Coulomb
blockade effect and steplike current-voltage characteristics.
To calculate the transport characteristics in the linear and
nonlinear response regimes, we employ the real-time dia-
grammatic technique.?* This technique allows us to take into
account the interference effects resulting from virtual pro-
cesses between the two quantum dots and the leads, as well
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as renormalization of the dot levels. In particular, taking into
account the first-order self-energies, we calculate the current,
conductance, and tunnel magnetoresistance for various ge-
ometries of the double quantum dot system. In particular, we
analyze the transport characteristics in the case of DQDs
connected in series, in parallel, as well as for some interme-
diate geometries. We show that the interference effects asso-
ciated with off-diagonal matrix elements of the self-energy
can significantly influence transport properties of the system
for parallel and intermediate geometries. When the quantum
dots are coupled in series or are in an intermediate geometry,
we find negative differential conductance and negative TMR
in some transport regimes. These features appear in transport
through DQD systems. However, they were not found in
transport through a single-quantum dot connected to ferro-
magnetic leads in the corresponding range of parameters.
Furthermore, we also analyze the dependence of transport
properties on the magnitude of the off-diagonal matrix ele-
ments. Finally, we note that in previous theoretical
considerations,”'®!® virtual first-order tunneling processes
have not been taken into account as they become relevant for
parallel and intermediate geometries of double quantum dot
systems.

The paper is organized as follows. In Sec. II we describe
the model of a double quantum dot and outline the method
used in calculations. Numerical results on the current, con-
ductance, and tunnel magnetoresistance for DQDs coupled in
serial, in parallel, and for intermediate geometries are pre-
sented and discussed in Sec. III. The main focus here is on
negative differential conductance and negative tunnel mag-
netoresistance. Summary and final conclusions are given in
Sec. IV.

II. THEORETICAL DESCRIPTION
A. Model

We consider two coupled single-level quantum dots con-
nected to ferromagnetic leads, as shown schematically in
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FIG. 1. (Color online) Schematic picture of the DQD
system coupled to ferromagnetic leads. The parameter 7%
(for B=L,R,0=1,]) describes here a spin-dependent dot-lead cou-
plings, whereas « takes into account difference in the coupling of a
given electrode to the two dots (a €(0,1)). In particular, for a=0
double quantum dots are in the serial geometry, while for a=1 the
system is in the parallel geometry.

Fig. 1. The magnetizations of the leads are assumed to be
collinear, and the system can be either in the parallel or an-
tiparallel magnetic configuration. The system can be
switched from one configuration to the other by applying a
weak external magnetic field and sweeping through the hys-
teresis loop, provided the leads have different coercive fields.
The Hamiltonian of the double quantum dot system is gen-
erally given by

H=Hleads+HDQD+Htunnel’ (1)

where the first term, H,.q, describes the left (L) and
right (R) electrodes in the noninteracting quasiparticle
approximation, Hleads—HL+HR, with HB—Ekgsﬁkchk(chkU
(for B=L,R). Here, ¢ Bka(c ko) 18 the creation (annihilation)
operator of an electron with the wave vector k and spin o in
the lead B, whereas eg, denotes the corresponding single-
particle energy. The second term of the Hamiltonian de-
scribes the double quantum dot and is given by

Hpgp = E Eiodlydiy+ 2 Uniohig+ Ug(nyy +ny ) (nyy +ny)),
g 1

()

where 0=-0, n;,=d, (Td,g is the particle number operator for
spin ¢ in the dot i(i=1,2), dT (d;;) is the respective creation
(annihilation) operator, and &;, denotes the spin-dependent
discrete energy level of the ith dot. Double occupation of the
dot i is associated with the intradot charging energy U,,
whereas simultaneous occupation of both dots with one elec-
tron per dot costs the interdot charging energy U,. In the
following we assume U;=U,= U, and note that Uy<U for
typical lateral double-dot structures.! We further parameter-
ize the quantum dot energy levels by their average energy,
E,=(g,,+&5,)/2, and their difference, AE=¢g,,—&,,, re-
spectively, so that &,,=FE,+AE/2 and &,,=E,—AE/2. Here
we assumed that the dots have equal g factors, then AE is
independent of spin even in the presence of external mag-
netic field. Furthermore, we also assume E\=E =E, if not
stated otherwise. Apart from this, we assume that the bare
energy levels of the dots are independent of the applied
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transport voltage. This can be achieved for instance with
suitable gate voltages.

The last term of the Hamiltonian, Eq. (1), consists of two
different terms, Hu,.=Hvy+H;. The first one describes the
spin-dependent tunneling processes between the quantum
dots and external magnetic leads and is given by

HV E E (Vﬁtcﬂkgdm'

Bi ko

Bldmcﬁka') (3)

where Vg, are the relevant tunneling matrix elements be-
tween the lead B and dot i. The second term of H,,,,. cor-
responds to hopping between the two quantum dots and
reads

th_tE (dL 2(r+d§( 10')' (4)

The interdot hopping parameter ¢ is assumed to be real and
independent of the electron-spin orientation. We also assume
that all tunneling processes in the system are spin conserv-
ing.

Due to the coupling to external leads, the dot levels ac-
quire finite widths. The dot-lead coupling is described gen-
erally by I'} -.—2waVB,V , where pﬁ is the density of states
of the lead B for spin o, o=+(-) for the majority (minority)
spin electrons. I';. describes the spin-dependent hybridiza-
tion between the local dot levels (i,j=1,2) and the leads,
and is directly related to the coupling strength between the
dots and leads. In principle, the coupling parameters may be
energy dependent. However, for transport regimes consid-
ered in this paper, it is well justified to assume that the cou-
plings are constant within the electron band.'” For the con-
sidered system, the coupling parameters can be conveniently
written in a matrix form as

TRYE
FZ = <FU Iw' ) ’ (5 )
g1 LB
where the tunneling matrix elements Vg, are assumed to be
real and constant, while I’BD_I‘ 51=05C 5T 50"
off-diagonal matrix elements of I'; are associated with vari-
ous interference effects resulting from virtual first-order tun-
neling processes between the two quantum dots through the
states in the leads. These off-diagonal matrix elements may
be significantly reduced in comparison to diagonal matrix
elements I'g;. Furthermore, for complete destructive interfer-
ence these matrix elements may be totally suppressed. To
take the interference effects into account, we have introduced
the parameters ¢; and gg. (For calculation of the parameters
g, and g see Ref. 35.) We further assumed that gg
are real positive numbers and fulfill the condition gg=1.
Moreover, by introducing the spin polarization of lead S,
Pp=(pp—pp)/ (pj+pp), the coupling constants in the parallel
configuration can be simply written as

1 CIL\‘”:V
0= yg( — i (6)
QNa @

for the coupling to the left electrode and
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o q [a

o RV

FIT{(J,) = yR( J’_ ) R (7)
grNa 1

for coupling to the right lead. In the above expressions
Yi=(1=p)I'; and yg=(1=pg)l's. Here, we assume that
the couplings are symmetric, I'; =T’y =1"/2, and « takes into
account the difference in the coupling of a given electrode to
the dots, see Fig. 1. In principle, the parameter a could be
different for the left and right leads. However, we assume
here that the system is symmetric, as shown in Fig. 1. In the
above formulas we have also assumed that in the parallel
configuration the spin-1 (spin-]) electrons belong to the ma-
jority (minority) electron bands of the leads. In the antipar-
allel configuration the couplings are given by Egs. (6) and
(7) with pgp<—pgr. By varying the parameter «, one can
change the geometry of the system from serial one for
a=0 to the parallel geometry for a=1. For intermediate val-
ues of « the system is in an intermediate geometry, where
each of the two dots is coupled to both leads, see Fig. 1. It is
worth noting that investigating the effect of geometry on
transport properties by varying the parameter « is certainly
relevant from experimental point of view.

B. Method

In order to determine the transport properties of the sys-
tem we employ the real-time diagrammatic technique.** This
technique is based on the perturbation expansion of the re-
duced density matrix and the relevant operators with respect
to the coupling strength I". We calculate the reduced density
matrix p for the double-dot system by integrating out the
electronic degrees of freedom in the leads. The time evolu-
tion of p is then described by the Liouville equation of the
form!10-34

d

ihEﬁZ[HDQD"'Hnﬁ]"'Eﬁ- (8)
The commutator represents the internal dynamics in the
double dot, which mainly depends on the level separation AE
and the interdot coupling z. The second part of Eq. (8) ac-
counts for the tunnel coupling between the double dot and
external reservoirs. The complex tensor 2 is associated with
tunneling processes and tunnel-induced energy renormaliza-
tion of the dot levels. The elements of the reduced density
matrix are defined as PY!=( X1lP|x2), where x; and y, denote
the eigenstates of the DQD system. Then, the Liouville equa-
tion for stationary reduced density matrix can be written in
the form3*

0={x:/[Hpgp + H.plx2) + > Ef(lx}PXi. 9)
L, X X

X1X2

’
Here, Eili} denotes the self-energy corresponding to evolu-
242

tion forward in time from state |y;) to state |y;) and then
backward in time from state |x,) to state |x5). The diagonal
elements of the reduced density matrix, P{(x;=x,=x), cor-
respond to probability of finding the DQD system in the state
|x). To solve Eq. (9) for density-matrix elements one usually
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performs a perturbation expansion with respect to the dot-
lead coupling strength I'. Then, each term of the expansion
can be visualized graphically as a diagram defined on the
Keldysh contour, where the vertices are connect by lines cor-
responding to tunneling processes. The self-energies in re-
spective order of expansion can be calculated using the dia-
grammatic rules.’*

In our considerations we take into account the limit of
weak tunnel coupling between the dots. For serial geometry
of the double-dot system, tunneling between the two dots
becomes then a bottle neck for transport and may consider-
ably alter the spin-dependent transport characteristics of the
system, as presented in the next section. This is contrary to
previous theoretical studies of spin-dependent transport in
DQDs,'® where the hopping between the two dots was rela-
tively large and transport took place through highly hybrid-
ized molecularlike states of the system. To determine trans-
port characteristics in the weak-coupling regime we perform
systematic perturbation expansion with respect to the cou-
pling parameter I'. Furthermore, we assume I'<<kzT. The
current is then mediated mainly by first-order (sequential)
tunneling processes, while the higher-order coherent tunnel-
ing events play a minor role, and it is justifiable to neglect
them.>!” We thus investigate the basic transport properties
using the sequential tunneling approximation, i.e., we need
to determine only the lowest-order self-energies which in-
volve one tunneling line. Some examples of first-order dia-
grams relevant for the present calculation are shown in the
Appendix.

After calculating the density-matrix elements from Eq.
(9), one can determine the sequential current flowing through
the double-dot system from the following formula:

ie TXIX] pXi
1=—% > Em’ P, (10)
X1X2 2
o
X1X2

Ixix; .
where EXX ;)f' denotes the first-order self-energy in
22X

which one vertex was substituted by a vertex

representing the current operator, 1 =(fR—fL)/2, with
Ig=—i(e/h)ZZko(Vaic heoio— Vi pico)-

In our analysis we assume that the intradot charging en-
ergy U is relatively large for both dots, much larger than the
interdot Coulomb correlation energy U,. Thus, only the zero,
one and two-particle DQD states are relevant for transport.
Furthermore, in the case of U> U, the occupation probabil-
ity of the states with two electrons in the same dot is also
vanishingly small. However, these states are taken into ac-
count as intermediate (virtual) states in the calculation, pro-
viding a natural high-energy cutoff. Finally, we would like to
emphasize that by using the real-time diagrammatic tech-
nique we are able to take into account the first-order virtual
tunneling processes between the two dots in a fully system-
atic way.!0-34

III. NUMERICAL RESULTS

In this section we present and discuss numerical results on
the charge current, differential conductance, and tunnel mag-
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netoresistance of double quantum dots coupled in serial, par-
allel, and intermediate geometries. The TMR effect results
generally from spin-dependent dot-lead tunneling processes,
which in turn leads to the dependence of transport character-
istics on magnetic configuration of the system. The TMR is
quantitatively described by the ratio TMR=(Ip—1,p)/Isp,
where Ip and I,p denote the currents flowing through the
system in the parallel and antiparallel magnetic configura-
tions, respectively.36-37

In the numerical analysis we assume spin degenerate dot
levels, g;,=¢; (for i=1,2 and =1, ). We also assume that
external electrodes are made of the same ferromagnetic ma-
terial, p;=pr=p, and that the system is symmetrically
coupled to the leads, I'; =I'g =T1"/2. The parameters ¢, and
gr can be generally different. However, we assume that they
are real and equal, g =g =¢. We also set the intradot and
interdot Coulomb parameters to be: U=100kzT and
Uy=20kpT, respectively. Finally, we assume spin polariza-
tion p=0.4, which is typical of 3d ferromagnetic metals.3
The interdot hopping parameter ¢ is assumed to be:
t=0.25T" with I'=5 wueV. These are typical experimental pa-
rameters for double quantum dot systems."* Chemical poten-
tials of the left and right leads are set to be u;=eV/2 and
mr=—eV/2, where eV=pu; — ur denotes the applied bias volt-
age.

A. Double dots connected in series, a=0

Let us first consider the situation when a=0, which cor-
responds to serial geometry of the double quantum dot sys-
tem, see Fig. 1. In Fig. 2 we show the basic transport char-
acteristics for the average dot level E=10kg7T and the
difference between bare dots’ levels AE=0. In the weak-
coupling regime transport is determined mainly by discrete-
ness of the energy dot spectrum and Coulomb correlations,
which lead to staircaselike current-voltage characteristics,
see Fig. 2(a). For the assumed parameters, the DQD is empty
at low bias and the current is blocked below the threshold
voltage, irrespective of magnetic configuration of the system.
In the blockade regime, however, the first-order processes
can still contribute to the current due to thermal fluctuations.
Furthermore, in the case of I'<<kzT, as considered in this
paper, the contribution from first-order processes can still be
larger than that from second-order tunneling (co-tunneling).
Nevertheless, one must bear in mind that in the case of deep
Coulomb blockade, for instance for E/kzT<<0O and
(E+U,y)/kgT>0, the second-order processes become domi-
nant and must be taken into account to properly describe
transport properties of the system.!'® In this paper, however,
we restrict ourselves to the case when transport is mainly
governed by sequential tunneling processes.

When the bias voltage approaches the threshold voltage,
the sequential current starts to flow due to one-by-one elec-
tron tunneling through singly-occupied DQD states. This
leads to the peak in the differential conductance, see Fig.
2(b). However, when the bias voltage increases further, in-
stead of a plateau one observes a drop of the current, which
leads to negative differential conductance. This feature ap-
pears in both magnetic configurations, see Fig. 2(b). When
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FIG. 2. (Color online) Current (a) and differential conductance
(b) in the parallel (P, solid line) and antiparallel (AP, dashed line)
magnetic configurations, as well as tunnel magnetoresistance (c),
calculated as a function of the bias voltage for the parameters:
E=10kgT, AE=0, Uy=20kgT, U=100kgT, p=0.4, t=0.25T,
I'=5 wpeV, a=0, and Iy=el'/A=1.215 nA.

eV approaches 2E+2U,, where another electron has possi-
bility to tunnel into the DQD system, the current starts in-
creasing further.

Physical mechanism responsible for the occurrence of
negative differential conductance follows from the level
renormalization due to tunneling processes between the dots
and leads. This renormalization is directly related to the real
part of the off-diagonal self-energies, see Eq. (A2) (and also
Ref. 10, where the level renormalization in a DQD system
connected in series and coupled to nonmagnetic leads was
calculated). Accordingly, the renormalized level & of the
ith dot for spin o has the following form:

M =g, 4+ O(E) + Q% (E+ U) - Ql (E+ U,)

ai

~QL(E+Uy), (11)

with Qf,(x)=(I'g,/2m)[Re W(3+i3..7)], where W(x) is the
digamma function. This renormalization lifts the initially as-
sumed degeneracy of the two dot’s levels. The larger sepa-
ration between these renormalized levels, the smaller prob-
ability of electron tunneling from the left to the right dot. We
have calculated this separation as a function of the bias volt-

age (not shown) and found that the separation increases with
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increasing bias voltage (in the voltage range where negative
differential conductance appears), and therefore the current
decreases with increasing bias. After reaching maximum, the
level separation starts to decrease with a further increase in
voltage and negative differential conductance disappears. It
is also worth noting that, due to the coupling to ferromag-
netic leads, the level renormalization becomes spin depen-
dent and, consequently, depends on magnetic configuration
of the system, and so does the level spacing.

The above described level renormalization makes the oc-
cupation probability of the left dot (QD1) for eV>E larger
than the occupation probability of the right dot (QD2),
P|g0)> Pjooy for o=1,]. Moreover, the rate for tunneling
between the two dots decreases with increasing the bias volt-
age. More specifically, Im{0, o|p|c,0) decreases, whereas
Im{c,0|p|0,0) increases, {(o,0[p|0,c)=({0,0]p|c,0))*. In
the case of tunneling through double quantum dots con-
nected in series, the imaginary parts of the density matrix,
e.g., (0,d|p|o,0) and (o,0|p|0, o), are related to the charge
transfer through the system, i.e., they are directly related to
the current flow.'® Consequently, the tunneling of electrons
from the left lead to the left quantum dot (QD1) is partially
suppressed because of P, > P|y ) and due to decreased
tunneling rates between the two dots with increasing bias
voltage V in the range |eV| € (2E,2E+2U,).

The tunnel magnetoresistance as a function of applied
bias voltage is plotted in Fig. 2(c). Since the conductance is
larger in the parallel configuration than in the antiparallel
one, the corresponding TMR is positive, although very small
in the voltage range where double occupancy is allowed.
Moreover, one can note that the sequential tunneling TMR is
generally smaller than the Julliere’s value of TMR,*®
TMR™!'=2p2/(1-p?)=0.38 for p=0.4, which is characteris-
tic of single tunnel junction or fully coherent transport.”3 In
the case shown in Fig. 2(c), the TMR reaches local maxima
for |eV|=2E and for |eV|=2E+2Uj, but it is especially en-
hanced at the first Coulomb step, i.e., in the vicinity of
leV|=2E.

In Fig. 3 we present results obtained for DQD connected
in series with average double-dot level position being nega-
tive E=—10kgT. The DQD system is then singly occupied in
equilibrium, and the system is in the Coulomb blockade re-
gime as double occupation of DQD would cost the correla-
tion energy U,. Since the levels corresponding to E and
E+U, start contributing to current at the same bias
(E and E+U, are symmetric with respect to the zero-bias
voltage), only one step is observed in the bias dependence of
current. Contrary to the case presented in Fig. 2, now the
current is a monotonic function of the applied bias voltage,
and negative differential conductance is not observed, see
Figs. 3(a) and 3(b). The difference between the two magnetic
configurations is only slightly visible in the current and dif-
ferential conductance. Accordingly, the TMR above the
threshold voltage is very small, see Fig. 3(c). At the zero
bias, however, TMR exhibits a sharp maximum and then
drops with increasing bias voltage. Furthermore, for voltages
around the resonance |¢V|~2E a negative TMR is observed.

Physical origin of the negative TMR is similar to that of
negative differential conductance discussed above. More
specifically, negative TMR follows from the level renormal-
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FIG. 3. (Color online) Current (a) and differential conductance
(b) in the parallel (solid line) and antiparallel (dashed line) magnetic
configurations, and tunnel magnetoresistance (c), calculated as a
function of the bias voltage for E=—10kgT. The other parameters
are the same as in Fig. 2.

ization due to coupling of the dots to external leads in the
presence of interdot Coulomb correlations. This level renor-
malization is spin dependent, so that it lifts spin degeneracy
of the dot levels. More importantly, it is generally different
for each dot and therefore modifies the renormalized level
spacing AE,, ,=&1""—¢ey™’. The renormalization of the
level spacing in the system under consideration is displayed
in Fig. 4. For the assumed parameters hopping between the
dots is like a bottle neck for electrons, which controls current
flowing through the system. As already stated above, this

1.0 :
0.5

< A\ /,
''''' S
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= = =spin down (P)
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FIG. 4. (Color online) Renormalization of the dots’ levels spac-
ing for both spin orientations in the parallel and antiparallel mag-
netic configurations. The parameters are the same as in Fig. 3.

165333-5



TROCHA, WEYMANN, AND BARNAS

100

50

-100
-100 -50 0 50 100
eV/ik T

FIG. 5. (Color online) Tunnel magnetoresistance as a function
of the bias voltage and the average level position. The other param-
eters as in Fig. 3.

hopping probability decreases with increasing level separa-
tion (for each spin orientation). When comparing Figs. 3(c)
and 4, one can note that the minimum in (negative) TMR
appears in the voltage range where the level spacings are
maximum. Let us consider in more details positive bias,
eV>0. In the region where negative TMR is observed, the
level spacing between left and right dots for the dominant
transport channel (spin-up) in the parallel magnetic configu-
ration is significantly larger than that for spin-down electrons
in the parallel configuration and also significantly larger than
the spacing for one of the spin channels in the antiparallel
configuration, while it is comparable to the level spacing for
second spin channel in the antiparallel configuration. Thus,
in the parallel configuration the spin-down channel, which
involves spin-minority bands in both leads, takes over con-
trol of the current, while the dominant spin channel in the
antiparallel configuration involves one spin-majority and one
spin-minority bands. Consequently, the current is then larger
in the antiparallel configuration than in the parallel one,
which results in negative TMR.

To support this, we have calculated the relevant occupa-
tion probabilities. We have found that the occupation prob-
ability of the left dot by a spin-up electron in the parallel
configuration is larger than that for the antiparallel configu-
ration configuration, P;,>Pj{, whereas opposite relation
holds for spin-down electrons, P£L< P’zf . This situation is
opposite to that found for the bias region where large posi-
tive TMR appears. Moreover, the occupation probabilities of
the right dot by a spin-up or spin-down electron in both
magnetic configurations are small in comparison with those
for the left dot. Finally, the probability of double occupation
of the DQD system is rather small; consequently such states
are rather irrelevant.

In Fig. 5 we show the bias voltage and level position
dependence of the TMR. The position of the average level
can be changed experimentally by sweeping the gate voltage,
so that Fig. 5 effectively shows the bias and gate voltage
dependence of TMR. One can note that as the absolute value
of the average level position increases, the central maximum
in TMR becomes split into two components, while the maxi-
mum at zero bias changes into a minimum. In the case of
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negative E, the minimum at zero bias occurs roughly when
E=-U,. Furthermore, there are also transport regions where
TMR changes sign and becomes negative. The negative
TMR occurs mainly for E~-U,/2 and |eV|~2E. One can
also note that generally TMR becomes much suppressed for
larger bias voltages, being close to zero, see also Figs. 2(c)
and 3(c). This implies that the spin polarization of tunneling
electrons is significantly reduced. Such a behavior is oppo-
site to that in the case of two strongly coupled dots, where
TMR in the sequential tunneling regime was found to be
considerable. '8

B. Double dots connected in parallel, a=1

In this subsection we consider the case when the dots are
connected in parallel, @=1, see Fig. 1. Virtual tunneling pro-
cesses between the two quantum dots through the leads are
now allowed. As mentioned earlier, the off-diagonal matrix
elements of l"g may be significantly reduced due to
suppression/cancellation of different contributions, and
hence ¢<<1 in general. In the following we assume g=0.25.
However, we will also analyze how the transport character-
istics depend on the parameter g. For a given g we will
examine two cases: symmetric case when all dot-lead cou-
plings are the same for given spin, i.e., @=1, and asymmetric
case when there is a difference in the coupling of a given
electrode to the two dots, a # 0, 1. The latter case, referred to
as the intermediate geometry, will be analyzed in the next
subsection.

The current, differential conductance, and TMR for the
case when the DQD is empty at equilibrium, E>0, are
shown in Fig. 6. The current exhibits a typical staircaselike
behavior [Fig. 6(a)], which is also reflected in well-defined
peaks in the differential conductance located at the positions
|eV|=2E and |eV|=2E+2U,, see Fig. 6(b). The TMR is posi-
tive in the whole bias range and takes well-defined values
corresponding to different steps in the current-voltage char-
acteristics, see Fig. 6(c). In the case of DQD coupled in
parallel, the TMR is generally larger than in the case of serial
connection discussed in the previous subsection, especially
for large voltages. This is due to a different role of interdot
hopping in these two geometries. As the hopping term is
crucial for transport in serial geometry, it plays a less impor-
tant role in the parallel geometry. Since the hopping param-
eter is independent of spin orientation, it leads to a reduction
in TMR in the serial geometry in comparison to that in the
parallel one, especially at large voltages.

C. Double dots in a general (intermediate) geometry

The situation changes considerably when the dot-lead
couplings are different, @ # 1, see Fig. 1. Figure 7 presents
the current, differential conductance, and TMR as a function
of bias voltage, calculated for a=0.25. As one can note, the
shape of curves describing current and differential conduc-
tance reveals features obtained above for dots connected in
series, see Fig. 2, i.e., the negative differential conductance
and associated nontypical Coulomb steps in current. How-
ever, the bias dependence of TMR is now different and is
more similar to that obtained for parallel geometry, except
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FIG. 6. (Color online) The current (a), differential conductance
(b) in the parallel (solid line) and antiparallel (dashed line) configu-
rations, and tunnel magnetoresistance (c) as a function of the bias
voltage obtained for the parameters: a=1, ¢=0.25, E=10kgT, while
the other parameters are as in Fig. 2.

for voltages 2E<|eV|<2E+2U,, i.e., between the reso-
nances, where the behavior of TMR is more complex and
where one finds some oscillations in TMR. Furthermore, for
the intermediate geometry, the TMR for larger bias voltages
is quite significant, contrary to the case of serial geometry,
see Figs. 2(c) and 3(c), and is only a little smaller than that in
the parallel geometry, see Fig. 6.

For completeness, in Fig. 8 we show the bias and gate
voltage dependence of the TMR. One can see that TMR dis-
plays well-defined structures consisting of regions where it is
roughly constant. In these transport regions the correspond-
ing current-voltage curves display plateaus, whereas at reso-
nances the corresponding TMR changes considerably.

It is interesting to analyze how TMR depends on the
asymmetry factor a. In Fig. 9 we present the bias depen-
dence of TMR calculated for different values of a and for the
case when off-diagonal matrix elements I'z;, are zero
(¢=0) and finite (¢=0.25), see Figs. 9(a) and 9(b), respec-
tively. By changing « from 0 to 1, geometry of the system
continuously changes from serial to parallel one. Further-
more, with increasing a also the magnitude of the off-
diagonal matrix elements is increased, see Egs. (6) and (7).
First of all, one can note that TMR generally increases with
increasing «. This is associated with the fact that for a#0
the electrons can tunnel between the leads through just a
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FIG. 7. (Color online) Current (a) and differential conductance
(b) in the parallel (solid line) and antiparallel (dashed line) magnetic
configurations, and tunnel magnetoresistance (c), calculated as a
function of the bias voltage for @=0.25. The other parameters are
the same as in Fig. 6.

single dot. Accordingly, the role of interdot hopping, which
is independent of electron spin and therefore reduces TMR,
is diminished and TMR increases. In particular, when cross-
ing over from the serial to parallel geometry, the TMR at
zero bias increases, while sharp maxima in TMR at reso-
nance voltages are transformed into plateaus. This behavior
can be observed in the case of g=0 and ¢=0.25, see Figs.
9(a) and 9(b), respectively. There are however some differ-

100

0.22

0.2

0.18

0.16

-100
-100 -50 0 50 100
eVik T

FIG. 8. (Color online) Tunnel magnetoresistance as a function
of the bias voltage and the average level position, calculated for
a=0.25. The other parameters are the same as in Fig. 7.
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FIG. 9. (Color online) Bias voltage dependence of TMR for
indicated values of the asymmetry parameter « and for ¢=0 (a) and
q=0.25 (b), calculated for E=10kgT. The other parameters are the
same as in Fig. 2.

ences between these two situations. The virtual tunneling
processes between the two dots, described by the nonzero
parameter ¢, decrease the TMR at the zero bias and increase
it for large bias voltages, |eV|>2E+2U,, as compared to the
case of ¢=0.

Another interesting feature visible in Fig. 9 is that TMR
for a=1 at the side plateaus, i.e., for 2E+2U,>|eV|>2E,
has the same magnitude for both g=0 and ¢g=0.25 cases.
This can be clearly shown by deriving an approximate ana-
Iytical formula for TMR in this voltage region. At very low
temperatures one can approximate the Fermi functions by
step functions and assume that the electrons tunnel only from
one side to the other.>® Then, one can show that the TMR for
a=1 and 2E+2U,>|eV|>2E is given by

2
TMR= — P (12)
5(1-p?)

which is exact at zero temperature. From the above formula
follows that TMR in the bias regime under consideration is
independent of the magnitude of the off-diagonal matrix el-
ements. This is, however, not true for the current, which for
a=1 is given by

rF=——, (13)

in the parallel and

IAP= £(2 +C])(1 _Pz)

14
ho 5+3p> 7 (14)

in the antiparallel magnetic configurations.

The interference effects due to virtual first-order processes
between the two dots can significantly affect TMR, espe-
cially for larger values of ¢. This is shown in Fig. 10, which
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FIG. 10. (Color online) (a) Tunnel magnetoresistance as a func-
tion of the bias voltage and parameter ¢, calculated for a=0.25. (b)
Cross sections of TMR for several values of g as indicated in the
figure. The other parameters are the same as in Fig. 6.

depicts TMR as a function of the bias voltage and parameter
g, together with various cross sections. It can be seen that
with increasing the magnitude of the off-diagonal matrix el-
ements, the TMR generally increases in the low bias voltage
regime, |eV|<2E, and for larger voltages, |eV|>2E+2U,,
although the Ilatter dependence is not monotonic.
However, for bias voltages where transport occurs through
charge states with single electron on the double dot,
2E+2U,>|eV|>2E, TMR becomes suppressed with raising
q, and for g=1 we find a negative TMR effect. The
negative TMR develops approximately at the resonance,
|eV|=2E+2U,, where two-particle states of the double-dot
system start taking part in transport.

Figure 10 was calculated for a=0.25. However, it turns
out that the spin-dependent transport properties may also
strongly depend on the geometry of the system. This is es-
pecially visible in TMR for maximum value of the parameter
g, g=1. In Fig. 11 we plot TMR as a function of the bias
voltage for different values of a and for g=1. As one can
note, TMR is rather independent of a at low bias voltages,
while for larger bias, |eV|>2E+2U,, TMR generally in-
creases with raising . This is however not the case for
2E+2U,>|eV|>2E, where TMR strongly depends on the
geometry of the system. With crossing over from serial to
parallel geometry, the magnitude of negative TMR is in-
creased and additional maximum develops next to the reso-
nance, eV| ~2FE+2U,, which transforms into plateau for «
close to 1.

Interestingly, it can be also seen that tunnel magnetoresis-
tance is very sensitive to slight changes in the asymmetry
parameter «, when the latter is close to unity. To understand
this behavior one needs to realize that the bare states of the
two quantum dots coupled directly (by the hopping term) or

165333-8



NEGATIVE TUNNEL MAGNETORESISTANCE AND...

0.8+ "\ A 1

100 -50 0 50 100
eV/k,T

FIG. 11. (Color online) Bias voltage dependence of TMR cal-
culated for g=1 and for different values of the asymmetry param-
eter «, as indicated in the figure. The other parameters are the same
as in Fig. 2.

indirectly (due to off-diagonal coupling matrix elements) hy-
bridize in molecularlike states. As a result, the bonding and
antibonding states emerge, the widths of which strongly de-
pend on the dot-lead coupling strengths and geometry of the
system. In the case considered here, the relative width of the
bonding and antibonding states varies with the parameter «.
When the difference in the coupling of a given electrode to
the two dots is reduced, the width of the bonding state in-
creases whereas that of the antibonding state decreases. In
particular, in the limit of @=1, the antibonding state becomes
totally decoupled from the leads, while the bonding state
acquires width of the order of 2I'. In this limit the above
mentioned features of the TMR disappear and tunnel magne-
toresistance is constant for 2E+2U,>|eV|>2E. In other
words, the high sensitivity of the TMR with respect to the
system’s geometry is associated with the fact that the inter-
ference conditions for electron waves transmitted through the
two dots become modified when changing «.

IV. SUMMARY AND CONCLUSIONS

We have analyzed the spin-polarized transport properties
of double quantum dots weakly coupled to each other and to
external leads. Using the real-time diagrammatic technique
we have calculated the conductance and tunnel magnetore-

3[00)]o0) _

\0 a)|0,0) ~ E {P (810') P, 0(820') + P

a2

=P (82 + €25+ Uy = 810) —im ¥y (810) + ¥, (825) +

810)]}-

+,0,
+ 7a11(810+ e+ U -

(810'+ Eyg t UO - 820) P

.0
€20) + Ve, 820+ £25+ Us =
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sistance in the parallel, serial, and intermediate geometries of
double quantum dots. Moreover, we have taken into account
the effects of virtual tunneling processes between the two
dots taking place through the states in the leads. Such pro-
cesses are absent in serial geometry and become maximum
for parallel geometry.

In the case of double quantum dots coupled in series we
have found a negative tunnel magnetoresistance at the reso-
nance and negative differential conductance for transport
voltages, where single-particle double-dot states take part in
transport. On the other hand, for parallel geometry of the
system, both the negative TMR and negative differential con-
ductance vanish. The above effects may be restored in an
intermediate geometry and strongly depend on the magnitude
of the virtual processes between the two dots. Furthermore,
in the case when virtual processes are maximal, we have
found a strong dependence of the TMR on the geometry of
the system, especially for geometries very close to the paral-
lel one.
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APPENDIX: EXAMPLES OF THE FIRST-ORDER SELF-
ENERGIES

In order to analyze the transport properties one needs to
calculate the respective self-energies using corresponding
diagrammatic rules.*** In the sequential tunneling regime
only the first-order self-energies determine the transport
characteristics. Here, we present explicitly two examples of
first-order self-energies. Generally, the self-energies are
complex—their imaginary part may be related to transition
rates, whereas the real part may be associated with various
renormalization effects. The graphical representation of the
self-energy E}& 2;!3 2; is displayed in Fig. 12, while analyti-
cally it is given by

(810' +&,+Up—£1,) +P;’:(6‘la+ g5+ Uy~ €34)

a

+o" +,(J"
Ve (E15+ €200 + Up— &34) + Ve, (8150 + 820+ Uy — &1)

(A1)
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FIG. 12. Graphical representation of the self-energy E!gg; gg;

(a). The summations are over lead and spin degrees of freedom
a=L,R and 0'=1, . Each tunneling line carries lead index «, spin
o, and frequency w.

In the above expression the states denote
doubly-occupied first and second dots, respectively, and, be-
cause of large intradot Coulomb repulsion, are only consid-
ered as virtual ones (intermediate states). In Fig. 13 we also
show an example of self-energy including off-diagonal ma-

trix elements, I'Z, Eg:g;‘g:g;; it is given by
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FIG. 13. Graphical equation for the self-energy 2‘0 2; ;',82

S|eo)ed) = 2P e1) = imYel(o10) + P2+ Uo)
4 iy (o2t Uo)h. (A2)
with
. re. I x— g D
P(x)= = Re‘I'<—+i 2 )—log( ) ,
ij 2 2 2akgT 2mkyT
(A3)
7 F_Zu
Ya () f (X = o) (A4)
where  f*(x) stands for Fermi-Dirac  distribution,

S (x)=1-f*(x), and ¥(x) denotes the digamma function.
Here, D is the cutoff parameter which can be identified with
on-level Coulomb repulsion U. It is worth to note that the
self-energies do not depend on the cutoff parameter because
the terms depending on D cancel in pairs, see Egs. (Al) and
(A2).
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